
14 1 

Cost Analysis of Space 2 

Exploration for an 3 

Extraterrestrial Civilization 4 

Yvan Dutil and Stéphane Dumas 
5 

1.0. Introduction 6 

Are some civilizations bound to their home planet because the local gravitational field is too strong? Can 7 

space exploration be so difficult that a civilization might just give up before even trying? Are we favored 8 

compared to our galactic neighbors? Analysis of the relative cost of space exploration between planets, in 9 

light of the physical characteristics of a civilization’s planet of origin, might provide some insight into the 10 

problem of the Fermi paradox or in a more general way the possibility of physical contact between 11 

civilizations. This is not a trivial issue, since there may be some advantage to using space probes as an 12 

effective way to communicate between civilizations (Rose and Wright 2004). Such contacts do not need to 13 

be done by sentient beings themselves, as advanced automated space probes could achieve the same goal 14 

(Bracewell 1960; von Neumann and Burks 1966; Boyce 1979). 15 

Nevertheless, even classical SETI can benefit from space exploration capabilities. For example, it 16 

would be helpful to place a SETI observatory on the lunar far side to avoid local radio interference 17 

(Heidmann 1994). Ironically, spacefaring capabilities would make this type of SETI project even more 18 

attractive, as interference shielding is more complex when interfering sources are themselves in space. 19 

Alternatively, an extraterrestrial civilization might want to take advantage of the gravitational focusing of 20 

the Sun to increase the sensitivity of its SETI project, which would require significant spacefaring 21 

capabilities, as noted in the immediately preceding chapter in this volume (Maccone 2011). 22 

We are constructing our analysis around a simple and sound scenario. Before exploring interstellar 23 

space, a civilization must first succeed in achieving two earlier steps of exploration: getting above the 24 

atmosphere in the lowest possible orbit and moving between planets within their own stellar system. Once 25 

these steps have been mastered, there will be little variation in interstellar mission costs. In consequence, if 26 

the cost of launching a satellite in low orbit and reaching another nearby planet is prohibitive, an 27 

extraterrestrial civilization might simply give up space exploration and direct its resources elsewhere. 28 

To shed some light on this potential problem, we analyze the relative energy cost of launching a 29 

satellite in low Earth orbit and from there reaching the nearest planet, in various potential life-bearing 30 

planetary configurations. 31 

2.0. Budgeting Space Exploration 32 

From the engineering point of view, the cost of space exploration is essentially determined by one 33 

parameter: the velocity change. Velocity changes themselves are determined by the local gravity field and 34 

the maneuvers needed to move from one orbit to another. Three basic maneuvers are needed to perform 35 

interplanetary exploration: (1) getting above the atmosphere, (2) circularizing the orbit, and (3) reaching 36 

another planet’s orbit. It should be noted that leaving the home planet’s gravity field requires only √2 = 37 

1.4142 times the velocity change needed to reach low earth orbit. The same ratio also applies to the 38 

problem of escaping the stellar gravity field. In consequence, only those three basic maneuvers need to be 39 

analyzed. 40 

If the velocity change is an important factor, it is because it drives the total weight of the launcher. As 41 

more velocity is needed, more and more fuel must be carried in addition to the useful payload. The relation 42 



between the velocity change (∆V) and the mass fraction (original mass over the spacecraft mass mo/ms) is 1 

known as the rocket equation. This equation was derived for the first time by the Russian space exploration 2 

pioneer Konstantin Tsiolkovsky in 1903 (Tsiolkovsky 1903). It has this form: 3 
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where Ve is the ejection speed of rocket exhaust. 5 

Since for a chemical rocket, ejection speed is controlled by characteristics of the reactants involved, 6 

this parameter can be assumed to be relatively constant for every civilization. Indeed, one of the most 7 

effective practical reactions is between hydrogen and oxygen—two very abundant elements forming the 8 

water molecule. Alternate propulsion methods, such as ionic and nuclear motors, have higher ejection 9 

speeds but are impractical for first stage launch, since they do not provide enough thrust to fight the local 10 

gravity. Once in space they are more useful, but take a long amount of time to be effective. Use of such an 11 

advanced space propulsion system will concentrate the expense of cost on the launch to low orbit. To avoid 12 

unneeded complexity, we will assume that all space maneuvers use chemical propulsion. As we will see 13 

later, this assumption bears little impact on our conclusions. 14 

Another factor driving the cost is the size of the smallest possible spacecraft. Technology drives the 15 

minimal size of artificial satellites. It is reasonable to assume that the dry weight of a satellite for a given 16 

function is relatively constant for any planet, because aerospace technologies have performances very close 17 

to those allowed by physics. However, for inhabited spacecraft, the minimal size is driven by the size of the 18 

pilot. Unfortunately, we cannot derive the pilot size from first principles based on planetary and stellar 19 

parameters. This is why, and for the stake of simplicity, we will assume that the reference spacecraft mass 20 

is independent of the local condition. 21 

Before going into orbit, a spacecraft must first get above the atmosphere. Hence, the minimum orbital 22 

altitude is controlled by the atmospheric drag. Atmospheric density and the shape and velocity of the 23 

satellite are the main factors affecting the drag. As we will see later, orbital velocity does not change much 24 

across planets. We also assume that satellite size and shape are constant. In consequence, only the 25 

atmospheric density really matters. 26 

Atmospheric density drops exponentially with the altitude. On Earth, for an increase of 7.6 km, the 27 

scale height, the atmospheric density drops by a factor of 2.72 on average. The scale height itself is 28 

proportional to the atmospheric temperature and inversely proportional to the local gravitational 29 

acceleration and average mass of atmospheric molecules. As we expect from habitability considerations, 30 

atmospheric composition and temperature will not be vastly different from the Earth’s, and scale height 31 

will mostly depend on local gravity. 32 

The cost of climbing above the atmosphere is proportional to the energy needed, which is the product 33 

of the height by the surface gravitational acceleration. Since scale height is inversely proportional to the 34 

surface acceleration, the product of the two is roughly constant for any inhabited planet. Surface pressure 35 

also affects the minimal orbital altitude, but its impact is minimal. For example, going up by one scale 36 

height will reduce the atmospheric density by a factor of 2.72. Since the lowest orbital attitude is at least 37 

twenty scale heights, a small change in altitude can absorb a wide range of surface atmospheric pressure, 38 

0.3 to 3 times Earth’s, with minimal impact on the launching cost. In addition, for typical launch system, 39 

fighting gravity is only 20 to 25 percent of the velocity change needed to reach the Earth orbit; the cost of 40 

going above the atmosphere is essentially independent of the planet of origin. Impact of atmospheric drag is 41 

even lower, as it is roughly equal to 10 percent of the gravity for our launcher technology, and optimization 42 

of the launch profile minimizes its impact on mission performances. 43 

Clearing the atmosphere is a relatively easy step compared to reaching orbital velocity. To reach orbit, 44 

we must reach a velocity that will generate enough centrifugal acceleration to balance the local 45 

gravitational acceleration. The following equation describes the relation between the two phenomena: 46 
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It is reasonable to assume that the minimal orbital altitude (h) is much smaller than the planetary radius 1 

(R) as it is in the case for Earth. For a given planet, the surface gravitational acceleration (g) is proportional 2 

to the planet’s mass and inversely proportional to the square of its radius: 
2R

M
g ∝ . 3 

We can use this formula to estimate the ∆V needed to put a satellite in orbit. Using the previous result, 4 

we derive: 5 

R

M
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At this point in our analysis, we need to establish a relationship between the planet’s mass and radius. 7 

Assuming a constant density, the planetary radius is then proportional to the cubic root of the volume and, 8 

as a consequence, the mass (
3 MR ∝ ). This approximation is roughly correct between 0.3 and 10 Earth 9 

masses (Seager et al. 2007; Swift et al. 2010), which covers the range expected for an inhabited exoplanet. 10 

In consequence: 11 
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The relation indicates that the velocity change needed to reach low planetary orbit is only weakly 13 

sensitive to the planet’s mass, as velocity change only increases with the cubic root of the planet’s mass. 14 

Integrating this result in the cost relation derived previously, we have: 15 
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In consequence, the relative launch cost compared to the Earth for a 0.3 earth mass (0.3M⊕) planet 17 

would be 0.72 and 1.56 for a three earth mass (3M⊕) planet. Keep in mind that this is a very simplified 18 

analysis of a space mission cost. Nevertheless, it allows us to the reach a simple conclusion: cost for 19 

launching a satellite to low orbit is essentially independent of the planet of origin. In consequence, it would 20 

be neither much easier nor more difficult for an extraterrestrial civilization to put its first satellite in orbit, 21 

than it was for us. And keep in mind, that while the launch cost increases with the size of the planet, planet 22 

resources also increase even faster (surface∝M
2/3

). Relative cost would then drop on a larger planet. 23 

Once it has reached the low planetary orbit, the next step for a spacefaring civilization is to move 24 

between planets of its own stellar system. Planetary escape velocity is only ∼2 times larger than initial 25 

launch cost. However, others aspects of the interplanetary exploration scale differently. Indeed, for travel 26 

between planets, velocity changes are proportional to the planetary orbital velocity, which scales as: 27 

 28 

 29 

where M is the mass of the star and d is the planet’s orbital distance. We can relate those quantities by 30 

imposing the requirement that the planet lies within the habitable zone. To keep the surface temperature 31 

roughly constant, a planet circling around a brighter star must be farther from the star, while a planet 32 

circling around a fainter star must be nearer to it. This implies that ∗∝ Ld . We also know the 33 

relationship between the mass of a star (M�) and its luminosity (L�) (Zeilik, Gregory, and Smith 1992). For 34 
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a star with M�>0.43M
�

, it follows the relationship 4ML ∝ , and for a star with M�<0.43M
�

, it follows 1 

the relation
2.30.23M∝L . 2 

Combining these relations with the formula for orbital velocity, we can derive the following results: For 3 
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Possible stellar mass range is constrained by the minimal lifetime of the star (larger than one billion 5 

years) needed to reach the stage of civilization following the formation of the planet and the need to have 6 

enough mass to generate nuclear reactions needed to heat the planet. These constraints limit the possible 7 

mass range between 0.08M
�

 and 1.8 M
�

. Again, to avoid unneeded complexity, we do not take into 8 

account issues such as synchronous rotation, uv radiation, and atmospheric erosion that could restrict this 9 

mass range further. 10 

Using the derived velocities from this mass range and introducing them into the rocket equation, we 11 

can calculate the cost of interplanetary orbital transfer. For the heaviest star, it is only 77.5 percent of ours 12 

and 2.1 times costlier for the lightest star. Again, relative cost is restricted to a relatively narrow range. In 13 

addition, it should be pointed out that the extent of this range is largely driven by the smallest stars, the red 14 

dwarfs. For example, for a star of 0.43 M
�

 the cost increases only by 77 percent relative to the Earth’s. 15 

Nevertheless, with red dwarfs being the most abundant stars, we cannot simply dismiss them from our 16 

analysis. 17 

3.0. Adding Cost 18 

The relative total mission cost is the sum of spacecraft cost, low orbit launch cost, and interplanetary flight 19 

cost. Today on Earth, spacecraft cost is roughly five times the low orbit launch cost (Wertz and Larson 20 

1999). As previously, we argue that since aerospace technologies have performances very close to the 21 

limits imposed by basic physics, this ratio is relatively constant for any civilization. 22 

From the required ∆V, we can estimate the relative cost between low earth orbit and interplanetary 23 

flight. As a benchmark, we use the Earth-Mars orbital ratio, which is likely to be the same for the 24 

successive planet in any hierarchical planetary system. We also include the deorbit burn ∆V for the target 25 

planet, which is set to be equal to the escape velocity of the planet of origin. Adding those factors, we have 26 

derived for the total ∆V: 27 

EarthLEOtot +v=∆V 0.2v1.82 . 28 

The total cost induced by velocity changes is calculated as usual with the help of the rocket equation 29 

using the appropriate scaling function described earlier: fLeo for low orbit launch and fint for interplanetary 30 

travel. For consistency, we also introduce a scaling cost factor between 1.82 ∆VLEO (14.4 km/s) and 0.2 31 

∆VEarth (5.95 km/s). The scaling factor is equal to 0.089. The total cost equation is then equal to: 32 

interinterLEOLEOspacecrafttotal ff costcostcostcost ++= , 33 

which reduces to: 34 

 35 

and finally to: 36 

 ( ) LEOinterLEOtotal ff cost089.06cost += . 37 

( ) LEOinterLEOLEOLEOLEOtotal fff cost089.0costcost5cost ++=



In consequence, the relative cost of space exploration, in the best case, for a star of 1.8 M
�

 and a planet 1 

of 0.3 M⊕, would be 28 percent cheaper. In the worst case, M� = 0.08M
�

 and a planet of three M⊕, would 2 

be only 56 percent more expensive. 3 

It should be noted than the scaling cost factor between the low orbit velocity change and the 4 

interplanetary velocity change is a key factor in this discussion. Another orbital scenario could shift the 5 

sensitivity from planetary parameter to stellar parameter. For example, if we calculate the cost of sending a 6 

probe directly to interstellar space from a planetary surface, the ∆V needed is given by: 7 

EarthLEOtot vvv 41.041.0 +=∆ . 8 

The scaling cost factor between the 0.41∆VLEO (3.28 km/s) and 0.41 ∆VEarth (12.33 km/s) is equal to 9 

42.9. Using the same approach as previously, we derived: 10 

( ) LEOinterLEOtotal ff cost9.426cost += . 11 

In the worst case (big planet and small star), the relative space mission cost would be twice as 12 

expensive as on Earth. However, if we restrict the planet of origin to stars with mass larger than 0.43 M⊕, 13 

worst case would be only 71 percent more expensive. In the best case (small planet and big star) the cost 14 

drops by 23 percent. As we can see, cost change is minimal for a large parameter space. 15 

This analysis also yields an interesting observation. Since our Sun is a relatively big star and hence is 16 

relatively rare, our interplanetary exploration cost is among the cheapest possible! This might have 17 

provided a head start to our space program, compared to extraterrestrial civilizations. 18 

4.0. Conclusion 19 

Even if this analysis is rather crude, it can provide some insight into the relative cost of space exploration 20 

for extraterrestrial civilizations. First, for realistic orbital and interplanetary missions, the relative cost 21 

range is rather small (<2) even in a worst case analysis. Nevertheless, this analysis intentionally excluded 22 

other factors, such as radiation level in space, that might play an important role. It is also possible that a 23 

civilization inhabits a moon of a larger planet. This configuration will certainly increase the difficulty 24 

significantly, but, in our opinion, not to the point of making space exploration impossible. 25 

As a general conclusion, the planet and star of origin of an extraterrestrial civilization are likely to have 26 

little importance in the development of its indigenous space exploration. In consequence, if there is a 27 

physical restriction to interplanetary space travel, it is not caused by the local gravitational potential well 28 

but by other factors not examined here. 29 

In addition, failure to initiate a successful space program due to its prohibitive cost cannot be invoked 30 

as an explanation for the Fermi paradox. Communication by physical artifacts cannot be dismissed on this 31 

basis either. The same can be said about SETI enabling technology that needs to be implemented in space, 32 

which also cannot be dismissed for this reason. 33 
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